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ACTIVE SHIELDING AND CONTROL OF ENVIRONMENTAL NOISE*

J. LON_ARI(_?, V. S. RYABEN'KII_, AND S. V. TSYNKOV§

Abstract. We present a mathematical framework for the active control of time-harmonic acoustic dis-

turbances. Unlike many existing methodologies, our approach provides for the exact volumetric cancellation

of unwanted noise in a given predetermined region of space while leaving unaltered those components of

the total acoustic field that are deemed as friendly. Our key finding is that for eliminating the unwanted

component of the acoustic field in a given area, one needs to know relatively little; in particular, neither

the locations nor structure nor strength of the exterior noise sources needs to be known. Likewise, there

is no need to know the volumetric properties of the supporting medium across which the acoustic signals

propagate, except, maybe, in the narrow area of space near the boundary (perimeter) of the domain to be

shielded. The controls are built based solely on the measurements performed on the perimeter of the region

to be shielded; moreover, the controls themselves (i.e., additional sources) are concentrated also only near

this perimeter. Perhaps as important, the measured quantities can refer to the total acoustic field rather

than to its unwanted component only, and the methodology can automatically distinguish between the two.

In the paper, we construct a general solution to the aforementioned noise control problem. The appa-

ratus used for deriving the general solution is closely connected to the concepts of generalized potentials

and boundary projections of Calderon's type. For a given total wave field, the application of Calderon's

projections allows us to definitively split between its incoming and outgoing components with respect to a

particular domain of interest, which may have arbitrary shape. Then, the controls are designed so that they

suppress the incoming component for the domain to be shielded or alternatively, the outgoing component

for the domain, which is complementary to the one to be shielded. To demonstrate that the new noise

control technique is appropriate, we thoroughly work out a two-dimensional model example that allows full

analytical consideration. To conclude, we very briefly discuss the numerical (finite-difference) framework for

active noise control that has, in fact, already been worked out, as well as some forthcoming extensions of the

current work: Optimization of the solution according to different criteria that would fit different practical

requirements, applicability of the new technique to quasi-stationary problems, and active shielding in the

case of the broad-band spectra of disturbances.
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near surface control sources, spatial anisotropies, material discontinuities, optimization, Bessel functions
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1. Introduction.

1.1. Background. The area of active shielding and noise control has an extensive history for a variety

of applications. No adequate review of the field can be provided in the framework of a focused research

publication, and the examples we mention here are simply, representative. They do, however, establish the

relevance of our study. Elliot, Stothers, and Nelson in [1] develop a procedure for minimizing the noise level

at a number of pointwise locations (where the sensors microphones -- are actually placed); Wright and

Vuksanovic in [2,3] discuss directional noise cancellation. Various issues associated with the development and

implementation of noise cancellation techniques for aircraft industry applications are analyzed in collection

volumes [4, 5]. Van der Auweraer, et al. in [6] studied the methods of aircraft interior noise control using

both acoustical and structural excitation.

The work by Kincaid, et. al. in active noise control [7 11] has been done under the assumptions that

the noise source is a well understood monopole with a few distinct frequencies (in the 200-500 Hz range)

and that the volume properties of the supporting medium are relatively well understood. The goal was to

cancel out the static noise at a given collection of sensors distributed throughout the aircraft cabin by means

of designing an appropriate system of actuators, In references [12] and [13], Kincaid and Berger solved the

actuator placement problem for the mathematically analogous case of a large flexible space structure. The

goal was to place actuators so as to be able to effectively damp structural vibrations for large number of

modes (of. [14]).

An overview of the recent practice in active control of noise is presented in work by Fuller and von Flotow

[15]. A typical noise reduction system would minimize the noise measured at multiple sensing locations

by adaptively tuning the control filter. The filtered-x Least Mean Squares (LMS) adaptation mechanism

originally introduced by Burgess [16] and Widrow, et. al. [17] is most often employed. Another adaptation

mechanism called principal component LMS algorithm (PC-LMS) presented by Cabell and Fuller in [18]

offers faster convergence. Good results can be achieved at the sensor locations, but other locations" are not

considered in the problem formulation. By contrast, the approach proposed here offers the exact volumetric

cancellation of noise.

In contrast to many existing noise control methodologies, the active shielding technique that we are

proposing here suggests the possibiIity of exact uniform volumetric noise cancellation; moreover, this can be

done, if necessary, through the use of only surface sensors and actuators. This paper contains a systematic

description of the mathematical foundations of the new methodology in the continuous formulation, including

a model example for the two-dimensional Helmho!tz equation. The corresponding finite-difference framework

has been previously introduced and studied in the series of publications by Ryaben'kii and co-authors [19 22].

Our technique actually allows one to split the total acoustic field into two components, the first deemed

"friendly" and called sound, the second deemed "adverse" and called noise (see Sections 1.2, 3.2), and

subsequently provides for the exact volumetric cancellation of the adverse component while leaving the friendly

one unaffected. The input data for the noise control system are some quantities measured on the perimeter

of the region to be shielded (see Section 2). A very important feature of our approach is that the measured

quantities can refer to the total acoustic field rather than. its adverse component only. Then, the foregoing

split into sound and noise and subsequent noise cancellation is performed by the control system automatically

with no special attention required to it.

Let us mention that the analysis tools that we employ for building our methodology involve boundary

integrals of the kind routinely used in the classical potential theory (see Section 2) and then extend to the



operatorrepresentationandgeneralizedboundaryprojectionoperatorsof Calderon's type (see Section 3).

The apparatus of the classical potential theory as applied to the Helmholtz equation has been used in the

past for the analysis of active noise control problems, see, e.g., the monograph by Nelson and Elliot [23]. In

this book, the authors construct special control sources on the surface of the region to be shielded for what

they call active absorption and reflection of the undesirable noise. These sources are obtained as dipole and

monopole layers (for absorption) and only monopole layers (for reflection), with the responses in the form of

double and single layer potentials and only single layer Potentials, respectively. The fundamental difference

between our study and that of [23] is that the authors of [23] need to know the actual boundary trace of the

noise field to be cancelled and construct their control sources with the explicit use of these data. In other

words, their analysis in this part reduces to the standard solution of the boundary-value problems for the

HelmhoItz equation using boundary integral equations of tile classical potential theory. As opposed to [23],

we do not need to know the actual "adverse" component of the acoustic field that we want to cancel; this

is most advantageous because this component is obviously impossible to measure directly in the presence

of other acoustic signals. What is clearly possible to measure directly is the overall acoustic field that may

as well include a "friendly" sound component (generated by the interior sources) that is supposed to be

unaffected by the controls. This overall field is all we need to know for building the controls. As has been

mentioned, our control methodology is capable of automatically distinguishing between the two components

(friendly and adverse) and accordingly respond only to the adverse part. Besides, we provide for a closed

form general solution for the control sources and can analyze more complex settings compared to the original

Helmholtz equation, in particular, anisotropies, material discontinuities, and certain types of nonlinearities.

Another issue to be emphasized regarding out work is somewhat counterintuitive and deviates from the

"conventional wisdom." It turns out, in fact, that one needs to know relatively little to be able to cancel

the undesirable noise; in particular, no detailed information about either structure or location or strength

of the noise sources, as well as volumetric properties of the supporting medium, is required. We also stress

that our methodology yields a closed form of the general solution to the noise control problem; availability of

this general solution provides, in particular, powerful means for optimization. Moreover, the same technique

will apply to media with different acoustic conductivities and inhomogeneities (within the linear regime), as

both the adverse noise that we need to cancel and the output of the control system propagate across the

same medium. Finally, the methodology can be applied to quasi-stationary regimes and in the future, to

broad- band spectra of frequencies.

1.2. Formulation of the problem. Let 12 be a given domain, 12 C _n, n -- 2 or n -- 3 (higher

dimensions n can be analyzed similarly, we, however, restrict ourselves by the cases that originate from

physical applications). The domain f_ can be either bounded or unbounded; in the beginning we will assume

for simplicity that f_ is bounded. Let F be the boundary of t2: F --- 0t2. Both on _ and on its complement

II_n \f_ we consider the time-harmonic acoustic field u governed by the non-homogeneous Helmholtz equation:

£u - Au + k2u = f. (1.1)

The sources f in equation (1.1) can be located on both fl and its complement _\fl; to emphasize the

distinction, we denote

f = f+ + f-, (1.2)

q



where the sources f+ are interior, supp f+ C f_, and the sources f- are exterior, supp f- C Rn \12. Accord-

ingly, the overall acoustic field u can be represented as a sum of two components:

u = u + + u-, (1.3)

where

Lu + = f+, (1.4a)

Lu- = I-. (1.4b)

Note, both u + and u- are defined on the entire ll_n, the superscripts "+" and "-" refer to the sources that

drive each of the field components rather than to the domains of these components. The setup described

above is schematically shown in Figure 1.1.

FIG. |.1. Geometric setup.

Hereafter, we will call the component u + of (1.3), see (1.4a), soundor "friendly" part of the total acoustic

field; the component u- of (1.3), see (lAb), will be called noise, or "adverse" part of the total acoustic field.

In the formulation that we are presenting, f_ will be a (predetermined) region of space to be shielded. This

means that we would like to eliminate the noise inside D while leaving the sound component there unaltered.

In the mathematical framework that we have adopted, the component u- of the total acoustic field, i.e.,

the response to the adverse sources f- (see (!.2), (1.3), (1.4)), _'ill have to be cancelled on l_, whereas the

component u +, i.e., the response to the friendly sources f+, will have to be left intact on 12. A physically

more complex but conceptually easy to understand example that can be given is that inside the passenger

compartment of an aircraft we would like to eliminate the noise coming from the propulsion system located

outside the aircraft fuselage while not interfering with the ability of the passengers to listen to the infiight

entertainment programs or simply converse.

The concept of active shielding (noise cancellation) that we will be discussing implies that the aforemen-

tioned goal is to be achieved by introducing additional sources g, supp g C IRn \fl, so that the total acoustic

field _ be now governed by the equation

Lfi = f+ + f- + g, (1.5)



andcoincidewithonlysoundcomponentu + on the domain 12:

xen = u+ _en' (1.6)

x = (xl,x2) for n = 2 and x = (xl,x2,x3) for n = 3.

The new sources g of (1.5) will hereafter be referred to as controls. Let us note that in practical settings,

when one typically has to deal with acoustic fields composed of the signals with multiple frequencies rather

than time-harmonic single-frequency fields, active strategies of noise reduction are often combined with the

passive ones. Passive strategies that employ different types of sound insulation have proven efficient for

damping the high-frequency signals, while low-frequency noise components more easily lend themselves to

reduction by active techniques. We also note that the words "noise cancellation" should not be interpreted

incorrectly. As will be seen from the forthcoming analysis, elimination of the component u- inside 12 also

implies changing the total acoustic field outside 12. Therefore, in terms of the acoustic energy, it means

redistribution rather than cancellation.

An obvious solution to the foregoing noise control problem is g = -f-. As, however, will become

clear, this solution is excessively expensive. One one hand, this expensiveness relates to the informational

considerations as the solution g = -f- requires an explicit and detailed knowledge of the structure and

location of the sources f-, which, in fact, will prove superfluous. On the other hand, the implementation

of this solution may encounter most serious difficulties. In the previous example associated with an aircraft,

it is obviously not feasible to directly counter the noise sources which are aircrah propellers or turbofan jet

engines located on or underneath the wings. Therefore, other solutions of the control problem, besides the

most obvious one, may be preferable from both theoretical and practical standpoints. The general solution

of the control problem formulated in this section is constructed in the forthcoming Section 2.

2. General Solution of the control problem. Let us first introduce fundamental solutions to the

Helmholtz operator. By definition, these are solutions to the nonhomogeneous equation (1.1) driven by the

5 source located at the origin. For n = 2 we have

G(x) = _l,(2)(klxl), (2.1a)
4i "_o

wtmre Ho(2) (z) is the Hankel function of the second kind defined by means of the Bessel functions J0 (z) and

_'_(z) as follows H(o:)(z) = Jo(z) - iYo(z), and for n = 3

e-iklxl

GCx ) - 4_lx I (2"lb}

Let us note that both solutions (2.1) satisfy the so-called Sommerfeld radiation condition at infilfity, see,

e.g., [24, 25]. This condition, that for a given function u(x) is formulated as

O]x-----T- + iku(x) = o [xl -'/2 as [x I --+ _c (2.2a)

for two space dimensions and

= 0 (izl-'), ÷ = o (txl as lxl (2.2b)

for three space dimensions, specifies the direction of wave propagation and essentially distinguishes between

the incoming and outgoing waves at infinity. The Sommerfeld condition (2.2a) or (2.2b) is required to



guarantee,uniquenessofthesolutionto theHelmholtzequation;unlikefortheLaplaceequation,thecondition
ofboundedness(n= 2) or vanishing (n = 3) at infinity is not sufficient for the the solution of the Helmholtz

equation to be unique. Provided that the following convolution exists in some sense, the solution u(x) to

the nonhomogeneous equation (1.1) defined on _n and satisfying the Sommerfeld condition, is given by

u(x) = [ f(y)a(x - y)dy. (2.3)
JR n

Next, according to the standard procedure (see, e.g., [24]), we construct the surface and volume potentials

for the Helmholtz operator and write the Green's formula

u(x) = GLudy + _ U-_n On ] dsu' z E fi, (2.4)

volume potential two surface potentials

which holds for an), sufficiently smooth function u(x). All integrals on the right-hand side of (2.4) are,

of course, convolutions, and n is the outward normal to the boundary F. The second component on the

right-hand side of (2.4) is the sum of two surface potentials and thus it satisfies the homogeneous Helmholtz

equation on f_:

L u-_n On G dsy = 0, x E fL (2.5)

The sound component u + of the total acoustic field satisfies equation (1.4a) on II_n , and as the Sommerfeld

condition is built into the structure of G(x) (see (2.1)), the function u+(x) can be obtained as follows

/- /-

u+(x) = ]_ Gf+dy = ]_ GLu+dy, x E _n.

Then, the application of the Green's formula (2.4) to u + of (2.6) immediately yields

fv( u+OG-On OU+G)dsyOn =0, x6fL

Let us now recall that according to (1.2) and (lAb) for x E f_ there will be

(2.6)

(2.7)

Lu-l. . = 0. (2.s)

Thus, applying the Green's formula (2.4) to the total acoustic field u = u + + u- and using relations (2.7)

and (2.8) we obtain

u(x) = GL(u + + u-)dy + (u + + u )-_n On

On ] ds_,
• y J

u -i" u-

xEfl.
(2.9)

Therefore, if we define the annihilating function v(x), x E fl, as follows

frr ( OG OU-G) dsu = _u_(x),v(x ) = - u- -5-d On (2.10)



theninside12wewill have

u + v xen = u+" (2.11)

0u-

Therefore, if, by some means, we obtain the two quantities: u- and --0-n--n' at the boundary F, then we can

produce the annihilating function v by formula (2.10) and cancel the adverse component u- of the acoustic
Ou-

field inside 12. In practical settings, the quantities u- and _ or similar ones should be actually measured.

A remarkable property of the function v(x) defined by formula (2.10) is that by virtue of (2.7)

-_n On ) dsv = - U-_n On ] dsy, x e l2.
(2.12)

OU

Thus, the quantities to be measured at the boundary F, u and _nn' may refer to the total field u = u + + u-

rather than its adverse component u- only. The annihilating function v defined as

( oa Oua3v(x) = - U On On ] dsu' x C 12, (2.13)

automatically filters out the contribution from the friendly sound u + and responds only to the adverse noise

component u-.

Formula (2.13) that defines.the annihilating function v(x) contains surface integrals of the quantities u
0_

and _nn" We will now discuss the alternative, more apparent, means of building v(x). Consider a sufficiently

smooth function w(x) defined on R '_ that satisfies the Sommerfeld condition (2.2a) or (2.2b) and additional

boundary conditions on F:

w r=U r' onaWr = OUanr' (2.14)

here u is the actual total acoustic field, as before. In particular, w(x) may be compactly supported near the

boundary F. Obviously (because of (2.14)),

v(x) = -  -Sgn on ] =-  -5-d On ] ds ' (2.15)

On the other hand, if we apply the Green's formula (2.4) to the function w, we obtain

w(x) - GLwdy = W_n On ] dsu, x E ft.
(2.16)

An important consideration now is to remember that the Sommerfeld boundary condition (2.2a) or (2.2b)

guarantees the uniqueness and therefore

w(x) = fR, GLwdy, x E R n. (2.17)

If w(x) is compactly supported, then integration in (2.17) can actually be performed over supp w rather than

entire R'. Relations (2.16) and (2.17) together imply that

"\aGLwdy = w-_n On ] dsu' x EfL (2.18)



Therefore,

9fR GLwdy-- JR Ggdy,v(x) =- n\_ _\_

where the control g in (2.19) is defined as

g(x) = -Lw xeR.\_

(2.19)

(2.20)

provided that w satisfies (2.2a) or (2.2b) and (2.14). A variety of choices for w (under the conditions (2.2a)

or (2.2b) and (2.14)) implies that there is also a variety of controls g (see (2.20)) that solve the problem;

this, in particular, gives room for optimization.

PROPOSITION 2.1. Formula (2.20) describes the entire variety of the appropriate controls g.

Proof. We have already seen that formula (2.20) does give a solution to the active shielding problem. It

remains to demonstrate that any solution to this problem can be represented in the form (2.20). Consider

a control function g, supp g E _ \f_, such that the solution fi of equation (1.5) satisfies the Sommerfeld

condition (2.2a) or (2.2b) and also equality (1.6). We need to show that 3 w that meets conditions (2.2a) or

(2.2b) and (2.14) and such that g can be calculated by formula (2.20). We introduce w(x), x E R', as the

solution to the nonhomogeneous equation

-Lw = g- f+ (2.21)

subject to the corresponding Sommerfeld condition, (2.2a) or (2.2b). Equality (1.6) for the solution fi of

equation (1.5) implies that ttle function u9 that solves equation Lu:, = g subject to the same Sommerfeld

condition coincides with -u- on _: wlf_ = -u-If_" Consequently, the function w introduced above satisfies

w[_cf _ = u- + u+[x_ = u xc_' (2.22)

and therefore, it satisfies conditions (2.14) as well. Since supp f+ C _, the control g can be obtained by

formula (2.20). D

3. Connection to the theory of Calderon's potentials. The foregoing split between u + and u-

(see formulae (2.12), (2.13)) can be conveniently described in terms of the generalized potentials and boundary

projection operators of Calderon's type. We refer here to the original work by Calderon [26] followed by the

paper by Seeley [27], and then work by Ryaben'kii [28 30], in which the actual form of the operators used,

in particular, in this paper was introduced; a brief account of Ryaben'kii's work can also be found in book

by Mikhlin, et. al. [31].

3.1. Potential and projection for the domain fL Consider some function u(x) such that Lu = 0

for x E f_. Then, tile Green's formula (2.4) yields:

_r ( OG OU G) dsy ' x E t2. (3.1)u(x) = u-5-_ On

V_re emphasize that the representation (3.1) of a function u as a sum of a double-layer potential with the

0U Fdensity ulr and a single-layer potential witt_ the density _nn is valid only for the functions that solve

the homogeneous equation Lu = 0 on the domain f_. If, however, we specify two arbitrary functions on F

and substitute them into (3.1) as densities of the potentials, then the resulting function will obviously be a



solutionof £u = 0onfl, but its boundaryvalues,aswellasboundaryvaluesof its normalderivative,will
not, generallyspeaking,coincidewith theoriginaldensitiesof thedouble-layerandsingle-layerpotentials,
respectively.A generalizedpotentialof Calderon'stypewith thevectordensity_r = (_0,_1)specifiedonF
isdefinedbythefollowingformula

P_r(x) = _o_n - _IG dsy, x e _, (3.2)

which is similar to (3.1) except that we do not require ahead of time that _0 and _1 in (3.2) be the boundary

values of some function that solves Lu = 0 on fl: If, on the other hand, _0 and _1 are the boundary values
Ou

of u and _n for some solution to Lu = 0 on fl, then the Green's formula (3.1) for this u can be written in
a shortened form:

u=Pn u, , xCfl. (3.3)

For any (sufficiently smooth) function v specified on fl we also define its vector trace oil F:

and then introduce the boundary operator Pr as a combination of the potential Pn of (3.2) and trace Tr

of (3.4):

Pr_r -- Tr Pn_r. (3.5)

Clearly, the operator Pr of (3.5) is a projection, Pr = P}- Indeed, V_r : LP_r = 0, x E _]. Therefore, the

Green's formula (3.3) yields P_r = P_ TrPn_r, which immediately implies that Pr is a projection.

The key property of the operator Pr of (3.5) is the following:

PROPOSITION 3.1. Those and only those vector-functions _r that satisfy the boundary equation with

projection (BEP)

Pr_r = _r (3.6)

can be complemented on _ to a function u such that Lu = 0 on _ and Tr u = (r.

In other words, the range ImPr of the projection operator Pr given by (3.5) exhaustively characterizes all

those and only those boundary functions that admit a complement to the domain _ in the foregoing sense.

Proof. Let u be a sufficiently smooth function defined on fl, Lu = 0. Then applying the operator Tr of

(3.4) to the Green's representation (3.3) for u, we obtain the BEP (3.6). Conversely, let equality (3.6) hold

for some (r. Denote u = Pn(r, obviously /;u = 0 on ft. In addition, equality (3.6) implies that Tru = _r.

Thus, we have obtained the required complement. []

Note, although we have described the Calderon potentials and projections using the langTmge of surface

integrals, the previously introduced constructions that use the auxiliary function w, in particular, formula

(2.16), will apply here with no change. We emphasize that formula (2.16) essentially shows how to replace

surface integrals by volume integrals in the entire derivation. In particular, given a vector density (r =

((0, _1), we can take a sufficiently smooth function w(x) compactly supported near F such that (cf. (2.i4))

Trw=_r, (3.7)



andredefinethepotential(3.2)asfollows

P_(r (x) = w(x) - f_ GLwdy

(3.8)
t _

= ] GLwdy, x E _.
JR

Obviously, definitions (3.2) and (3.8) are equivalent provided that relations (3.7) hold. The second equality in

(3.8) holds because of the uniqueness in the form (2.17). Let us emphasize that the potential Pf_r obviously

does not depend on the specific choice of the auxiliary ]unction w(x) as long as condition (3. 7) is met.

3.2. Split between u+ and u-. Incoming and outgoing waves. We now return to formulae (2.10)

-- (2.13). For the annihilating function v(x), x Eft, we have v = -u-, x E ft. Equation (lAb) along with the

consideration that supp f- C N n \ft, implies /;u- = 0, x E fL Therefore, if we denote (r = u-, _ ,

then, obviously, _r satisfies BEP (3.6), Pr(r = (r, i.e., (r EIm Pr, and relation (2.10) becomes

v = -P_-. (3.9)

Ou ) , here again u is tile overall acoustic field, as in Section 2. Then, we canLet us also denote_r = U,_n r

rewrite formula (2.12) as follows

v = -Pf_r = -Pf_r, x E ft. (3.10)

Thus, the annihilating ]unction v(x), x Eft, can be obtained as a generalized Calderon's potential with

the density -_r = - ,u' _, ,r

calculated through the use of the auxiliary ]unction w(x) that satisfies boundary condition (3. 7). Moreover,

as the potential P_r depends only on (r and not on the particular choice of w(x), we, in fact, obtain the

entire variety of controls (2.20) that cancel out the same acoustic disturbance u-(x) on the domain ft.

Next, applying the operator Tr of (3.4) to both sides of the second equality in (3.10) and taking into

account that Pr_[ = _[, we obtain

Pc_r = _r- (3.11)

Equality (3.11) means that the boundary function _r, which is the vector trace (in the sense of (3.4)) of

the total acoustic field u(x), does not, generally speaking, satisfy the BEP (3.6) (unless _r = _r ¢=_

Ou+_ r = 0) and thus cannot, generally speaking, be complemented on f_ to a solution of the_r+- u+' On/

homogeneous equation/;u = 0. The portion of _r that does admit the interior complement is _-. What, in

fact, happens is that the projection Pr selects only that portion of _r that can be complemented on f_, and

the corresponding complement taken with the minus sign provides the annihilating function v according to

(3.9). Equality (3.10) implies that the generalized potential P_ is insensitive to any contribution to _v that

does not belong to the range Im Pr of the boundary projection (3.5).

The foregoing discussion implies that the split of the total acoustic field u(x) into u+(x) and u-(x)

rendered by formulae (2.12), (2.13) (see also (3.10)) is, in fact, realized through the split of the boundary

trace_r= (u,o_-_)l into_+= (u+,Ou+_r On] rand_r= (u-'_) r:

_r = _+ + _-. (3.12)
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Thecomponent(r in (3.12)isobtainedby applyingtheprojectionPr to _r according to formula (3.11)

and _+ of (3.12) complements _r to the entire _r.

Assume now that all we know is the trace _r (in the sense of (3.4)) on the boundary F = 0f_ of some

solution u (defined on ll_n) to the equation Lu = f subject to the corresponding Sommerfeld condition (2.2a)

or (2.2b). We do not know anything about the sources f except that they guarantee existence of the solution

in the class of functions satisfying the Sommerfeld condition. Then, we perform the split (3.12) and see that

_r can be complemented on f_ to the solution of the homogeneous equation Lu- = 0 (because Pr_r = _r)"

Thus, this component should be interpreted as the one driven only by the exterior sources (with respect

to f_). The component _+ in (3.12) cannot be complemented on f_ to the solution of the homogeneous

equation according to Proposition 3.1 as formula (3.11) implies that Pr_ + = 0. Therefore, it satisfies a

non-homogeneous rather than homogeneous differential equation on ft and thus should be interpreted as

the component driven by the interior sources. It is easy to see that _+ of (3.12) is driven only by the

interior sources because the contribution of all exterior sources to _r is already taken into account by (r"

Consequently, (+ of (3.12) can be complemented to the solution of the homogeneous equation outside f_, i.e.,

on the domain ll_'\f_. This exterior complement will, in addition, satisfy the Sommerfeld condition (2.2a)

or (2.2b).

Let us note that there is also a straightforward way of showing that _+ of (3.12), for which Pr_ + = 0,

can be complemented on _'_ \f_ in the sense mentioned above. This is done through directly constructing the

Calderon's potential and projection for the complementary domain ll_n \f_ and we postpone tile corresponding

derivation till Section 3.3.

Thus, we have seen that the function _r of (3.12) that belongs to the range of the projection operator

Pr, _r- E hnPr _ _r = Pr_r, represents the part of the total trace _r that is accounted for by the

sources outside [t, and the part _+ of (3.12) that belongs to the kernel of the projection operator Pr,

(r E Ker PF _ Pr_ + = 0, is accounted for by the sources inside fL In other words, with respect to the

particular domain f_, the components _r and _+, see (3.12), represent boundary traces of the incoming and

outgoing portions, respectively, of the total acoustic field.

In fact, the entire space Er of vector-functions _r = (_0,_1) defined on F = 0f_ can be split into the

direct sum of the range and kernel of the projection operator Pr:

Er = ImPr ® KerPr. (3.13)

Equality (3.13) means that for any given _r E Er there is always a unique representation in the form (3.12).

Again, the physical interpretation of equality (3.13) is that any given acoustic field can be split into the

incoming and outgoing components with respect to a given domain f_. This split can be performed on the

boundary only by applying the Calderon's projection Pr to the trace of the total acoustic field.

To conclude this section, let us only emphasize a useful and non-trivial consequence of formulae (2.14)

and (2.20). Formula (2.20) describes the variety of controls g(x) through the flexibility in choosing the

auxiliary function w(x), which should still, however, satisfy boundary conditions (2.14). Equalities (2.14)

can be rewritten as (cf. (3.7))

Trw: (u, 0a-_)] r. (3.14)

Clearly, if we add some _r ---- _0,_ EKerPr, to U,_n n on the right-hand side of equality (3.14) , then

we will recover a different control function g(x), but still obtain the same annihilating function v(x), because

ll



v(x) = -Pa u,_n n + , and the potential P_ is insensitive to any _r E KerPr. According to

Proposition 2.1, formula (2.20) provides the general solution to the active shielding problem. Therefore, the

aforementioned alteration, i.e., addition of _r, cannot, of course, add any new elements to the overall set of

control functions g. This alteration only provides an alternative way of describing (i.e:, parameterizing) some

of the controls, which may, however, appear helpful for optimization, especially in the discrete framework.

3.3. Potential and projection for the complementary domain _n\it. The Calderon's potential

P_, see (3.8), (3.7), and projection Pr, see (3.5), are introduced for the interior domain ft. In a very similar

way, one can introduce the Calderon's potential and projection for the exterior domain /l(n\it. Given a

vector density _r = (_o, _1) we again take a sufficiently smooth auxiliary function w(x) compactly supported

near F and such that it satisfies boundary conditions (3.7), and define the exterior potential QR-\f_ _r(x),

x E I_n\_, as follows (cf. (3.8)):

f_ G Lwdy r(x) = w(x) -
(3.15)

= Jf_ GLwdy, x E _'_ \fL

Again, similarly to (3.8) the second equality in (3.15) holds due to the uniqueness in the sense of (2.17), and

the potential Q_.kf_ _r does not depend on the particular choice of w(x) as long as condition (3.7) holds.

The corresponding underlying construction that uses the Green's formula for obtaining the potential Q_.\_

of (3.15) will be almost identical to the one that we have used for obtaining the interior potential P_, see

(3.2), except that the Green's formula similar to (3.1) _'ill have to be written for the exterior domain I_" \it

as well. The exterior projection operator Qr, Q_ = Qr, is obtained by applying the trace Tr given in (3.4)

to the potential Q_.\9 given in (3.15):

Qr_r =Tr QR_\,_r. (3.16)

Similarly to Proposition 3.1, the range ImQr of the projection operator Qr, see (3.16), contains those

and only those functions _r that can be complemented on the exterior domain tl(n \f_ to a solution of the

homogeneous equation £u = 0 that would also satisfy the corresponding Sommerfeld boundary condition

(2.2a) or (2.2b). Comparing the definitions (3.8) and (3.5) of the potential P_ and projection Pr for

the domain f_ with the definitions (3.15) and (3.16) of the potential Q_.\a and projection Qr for the

complementary domain _n\it, we immediately see that Qr = I - Pr, and consequently ImPr = KerQr

and Irn Qr = KerPr. Therefore, any boundary function from Ker Pr can indeed be complemented of the

exterior domain _n\_ to the solution of the homogeneous differential equation (as has been mentioned in

Section 3.2).

Similarly to the split (3.13) we can also obtain

-':r = ImQr ® KerQr. (3.17)

The functions from Im Qr and KerQr are boundary traces (in the sense of (3.4)) of the incoming and outgoing

wave fields, respectively, where the terms "incoming" and "outgoing" refer now to the exterior domain l_n \it

rather that interior domain ft as before.

It is important to note that when constructing both P_ and Pr, see Section 3.2, and QR-\ft and Qr,

see above, we use the same operator _r of (3.4), i.e., the same direction n of differentiation at the boundary
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F. Thisbasicallycreatesanasymmetrybecausefor onedomainthenormalis directedinwardsandfor
anotherone-- outwards.However,thisasymmetryallowsusto alwaysconsiderthesamespaceofboundary
functions"-r and thus arrive at convenient relations: Pr = I - Qr, and decompositions (3.13) and (3.17).

Hereafter, we will always assume that the direction of normal differentiation at the boundary F is the same

for both the interior and exterior domains.

Representation (3.17) suggests that one can also describe the controls g(x) for the interior domain

in terms of the potential QRn\_ and projection Qr constructed for the exterior domain _'\l_. Indeed,

KerQr contains those and only those boundary functions that can be interpreted as traces of the outgoing

waves with respect to the domain ]En\_. The sole task of the controls g(x) is to eliminate tile influence

that domain _n\_ exerts on the domain fl, or in other words, eliminate the component of the acoustic field

that is outgoing with respect to II_n \f_. Thus, given the total field (r = U,_n on the boundary, the

control has to respond to its outgoing component (I - Qr)(r E KerQr (with respect to the domain II_n \f_)

and actually eliminate it. In other words, it. has to reconstruct -(I- Qr)(r from the given data (r; the

application of the operator -(I - Qr) via auxiliary function w(x) immediately yields the set of controls in

the form (2.20).

We finally note that the construction of _n\n and Qr, which is fully parallel to Pa and Pr, essentially

lifts the assumption made in the beginning of Section 1.2 that the domain to be shielded should be bounded.

4. A more general formulation of the active shielding problem. Here we discuss several impor-

tant generalizations to the formulation of the noise control problem analyzed previously.

4.1. Changing the far-field boundary conditions. Instead of the entire space N _, consider a suf-

ficiently large domain _o, 12 C t_0 C__'. We introduce the setup similar to that of Section 1.2. Namely, the

total acoustic field u(x) is governed by the Helmholtz equation (1.1), the sources f(x) that drive the solution

are again split into the interior and exterior components, see (1.2); suppf + C _ as before, but as opposed

to Section 1.2, suppf- C 12o\_ (rather than _n\l_). Also different is the far-field boundary condition.

Previously we required that the solution u(x) satisfy the Sommerfeld condition (2.2a) or (2.2b); now we

specify a general linear homogeneous boundary condition at 0_o, which we formulate as an inclusion:

u E Uo, (4.1)

and require that equation (1.1) subject to boundary condition (4.1) he uniquely solvable on the domain

flo for any (sufficiently smooth) right-hand side f(x). Similarly to Section 1.2, we decompose the overall

solution into the friendly component u+(x), x E _0, which is called sound, and adverse component u-(x),

x E _o, which is called noise, see formulae (1.3), (1.4). Again similarly to Section 1.2, we would like to

construct a control function g(x), supp g C fl0\fl, so that the total acoustic field _(x), which then includes

the output of controls as well and is governed by equation (1.5), coincide on the domain fl with only sound

component u+(x), i.e., satisfy equality (1.6). We denote by G the inverse operator to /; so that u = G f,

u E U0; the aforementioned unique solvability means, in particular, that for any w E Uo we have

w = GLw. (4.2)

In the previously analyzed case, the space U0, see (4.1), contained all those and only those functions that

were defined on _n and satisfied the corresponding Sommerfeld condition (2.2a) or (2.2b), and the inverse

operator G was constructed as a convolution with the fundamental solution (2.1a) or (2.1b). As for the

uniqueness in the form (2.17), it has now transformed into (4.2).
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Using the inverse operator G, we will now formally construct the potentials and projections for both

domains, f_ and 9to\9/, similarly to how it has been done in Section 3. Given a boundary density _r = (_0, _1 ),

we take some sufficiently smooth auxiliary function w E Uo that satisfies condition (3.7) and define

xEf_,

(4.3a)

Pr_r = Tr P_r. (4.3b)

Definitions (4.3a) and (4.3b) are obviously analogous to (3.8) and (3.5), respectively. Expressions in curly

brackets in (4.3a) mean that after applying the differential operator £ to the function w(x) the result is

truncated to tile corresponding domain, either f_ or f_o\f_. The second equality in (4.3a) is guaranteed by

the uniqueness (4.2).

Similarly, for the complementary domain 12o\f_ we have:

= C{Lwi,}, x e n0\n,
(4.4a)

Qr_r -- Tr Q_o\u_r- (4.4b)

Again, the definitions (4.4a) and (4.4b) are analogous to (3.15) and (3.16), respectively, and the second

equality in (4.4a) follows from (4.2).

The definitions (4.3) and (4.4) are so far only formal. To make them meaningful, we need to ensure

that the projections (4.3b) and (4.4b) indeed split the overall wave field into the incoming and outgoing

components, as before. In other words, we need to guarantee the key result similar to that of Proposition 3.1.

This, in fact, requires that the potentials (4.3a) and (4.3b) depend only on the density _r and be independent

of the particular choice of w(x) as long as it satisfies (3.7). In other words, we need to require that if _r = 0,

then for any function w(x), w E Uo, with the zero trace, Trw = _r = 0 (see (3.4)), we would obtain:

and

(4.5a)

( , "1

Q_o\_r = Q_0\nor = w - G ILwloo\ol = 0, x E flo\fl. (4.5b)

One can show that for the Hclmholtz operator L of (1.1) and boundary condition (4.1) that guarantees

the unique solvability, equalities (4.5) will always hold. Alternatively, we can say that a particular choice

of the trace according to (3.4) is proper for the given differential operator £ in the sense that zero trace

implies zero potential. The same is, in fact, true for many other linear elliptic differential operators of

the second order. For detail, we refer the reader to [29], where requirements of the type (4.5) are used

for characterizing a special class of boundary traces, the so-called clear traces, which are then employed

for building the generalized potentials and projections of Calderon's type. In the current paper we restrict

ourselves to considering only the traces of type (3.4) (Cauchy data), which are applicable, in particular, to

the second-order time-harmonic wave problems that we are solving.
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Havingconstructedthepotentialsandprojections(4.3)and(4.4)basedon theoperatorG that corre-

sponds to the general boundary condition (4.1), we can now develop the full set of arguments similar to that

of Section 3 provided that equalities (4.5) hold. In particular, the annihilating function v(x) for the interior

domain 12 is still given by formula (3.10) with the only difference that the potential Pn is now defined by

(4.3a). There is still a split (3.13) of the total acoustic field into the incoming and outgoing components

with respect to the domain 12; however, the split is now rendered by the projection Pr defined by (4.3b) via

the operator G and thus differs from that of Section 3. Similarly, there is a split (3.17) of the total acoustic

field into the incoming and outgoing components with respect to the domain 12o\fl although the projection

Qr defined by (4.4b) via the operator G is again different from that of Section 3.

Since the projection operators Pv and Qr = I- Pr are now not the same as those of Section 3, so are the

results Pr_r and Qr_v of applying these operators to a given _r. In other words, the incoming and outgoing

parts of a given _r obtained by applying the operator Pr of (4.3b) (or Qr of (4.4b)) will not, generally

speaking, be the same as the incoming and outgoing parts, respectively, obtained in Section 3. This means

that the decomposition of the total acoustic field into the incoming and outgoing components depends on

the external boundary condition (4.1) that these components satisfy, which is, of course, reasonable from the

standpoint of physics. However, one can show that although the change of the domain and external far-field

boundary condition introduced here compared to Section 3 does amount to the change of the projection

operators Pr and Qv , it does not induce any changes of the subspace Im Pr = Ker Q_. As concerns the

other subspaee of the split (3.13) or (3.17), Ker Pr = Im Qr, it does, generally speaking, change. This can

be interpreted as follows. Im Pr contains all those and only those boundary functions from -r that can be

complemented on the interior domain 12 to the solution of the homogeneous equation Lu = 0. This set of

functions as a whole will not, of course, depend on any external boundary condition. However, we actually

construct this set by applying the projection Pr to the entire space -=r. The direction of projecting depends

on the external boundary conditions. This dependency manifests itself through the change in the operators,

and for a given _r E -_v we will generally speaking obtain a different Pr_r, which will still belong, however,

to the same subspace Im Pr that does not change. The change in the direction of projecting onto this

subspace, Im/Jr, obviously implies the change in the second component of the direct sum (3.13) (or (3.17)).

This second component Ker Pr = Im Qr contains all those and only those functions from _r that can be

complemented on 9)o\1_ to a solution of Lu = 0 that satisfies (4.1); these functions will, of course, depend

on the actual exterior domain and far-filed boundary condition.

Let us now emphasize the most important thing regarding the relation between the potential and pro-.

jection operators that we build according to formulae (4.3) and (4.4) (cf. (3.2), (3.5) and (3.15), (3.16)) and

the noise control problem that we analyze using these operators. It turns out that although the potentials

and projections change with the change of the external boundary condition and so does the decomposition

of the acoustic field into the incoming and outgoing components (with respect to 12 or _o\l_), the set of

control functions {g(x)} that we obtain is essentially insensitive to these changes. Indeed, as the annihilat-

ing function v(x) is given by (3.10) with the new potential defined by (4.3a), then similarly to (2.20) and

Proposition 2.1 the entire set of appropriate controls for 12 is given by

g(x) = -Lw xeno\n' (4.6)

where w(x) satisfies boundary condition (4.1) and also (2.14) (the latter can be rewritten as (3.14)). Thus,

the only difference between (2.20) and (4.6) is that in (2.20) w(x) is supposed to satisfy one of the Sommerfeld

conditiont (2.2a) or (2.2b) rather than condition (4.1). On the other hand, for applications we will primarily
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beinterestedincontrolsconcentratedneartheperimeteroftheregionto beshielded,i.e.,neartheboundary
F = 0f_, rather than far away from it. Therefore, we can always consider only those w(x) that are compactly

supported near F. Such functions will obviously satisfy any homogeneous far-field boundary condition and

thus the set of controls built on the basis of these compactly supported w(x)'s will be exactly the same if we

use either of the formulae (2.20) or (4.6).

4.2. Changing the differential operator. Instead of the original Helmholtz operator, see (1.1), we

will now consider some other linear differential operator that operates on the functions defined on the domain

f_0. We will keep the same notation/; for simplicity and require that the acoustic field u(x) governed by the

new equation Lu = f satisfy the same far-field boundary condition (4.1) as before. Similarly to Section 4.1,

we will require that the equation Lu = f subject to boundary condition (4.1) be uniquely solvable for any

sufficiently smooth right-hand side f, and also for simplicity, we will keep the same notation G for the

corresponding inverse operator. From the standpoint of the physical model, the change of the operator may

be accounted for, e.g., by the change in the properties of the medium, across which the acoustic signals

propagate. For example, as opposed to the previously analyzed case of the classical constant-coefficient

Helmholtz equation that describes stationary waves in an isotropic medium, we may consider anisotropies of

the medium, e.g., obstacles like passenger seats and overhead bins that can be introduced in the passenger

compartment of an aircraft. Basically, obstacles, i.e., anisotropies, of various nature can be introduced in

either of the domains ft or f_0\f_ or in both of them. At an), rate, provided that the regime of the wave

propagation is still linear (some questions related to nonlinearities are touched upon in Section 4.4) we arrive

at a new equation that may have variable coefficients in the areas where the obstacles are introduced. In

this section, we limit our analysis by the case when these coefficients are still smooth across the boundary

F; tile case when discontinuities in the material properties are allowed along F is considered in Section 4.3.

Using the new operators L and G we can repeat the entire analysis of Section 4.1. In so doing, we

arrive at the operators P_, Pr and Q_0\_, Qr defined by the same formulae (4.3) and (4.4), respectively,

but based on the new L and G. Provided that relations (4.5) hold, we can guarantee the results similar

to those of Proposition 3.1 and thus decompose the overall acoustic field into the incoming and outgoing

components. (The terms "incoming" and "outgoing" in this section still relate to a particular domain, ft

or fl0\f_, but the filed itself and thus, each of its components, is governed by a different equation.) As has

been mentioned (see Section 4.1 and also [29] for details), relations (4.5) essentially imply that the trace

operator _nr is correlated in some sense with the differential operator L. In this paper we are using only

the traces of type (3.4), which are consistent (see [29]), in particular, with the second-order linear elliptic

differential operators £, for which the Neumann boundary data reduce to a standard normal derivative, i.e.,

Lu = V (pVu) + (lower order terms}, p = p(x) is a scalar function. Thus, the changes of the operator that

we are considering shall only be within this class. This is obviously going to be sufficient for all practical

purposes related to time-harmonic acoustics.

Of course, the potentials and projections built on the basis of the new operators L and G will not be

the same as those of either Section 4.1 or Section 3. Similarly to the considerations of Section 4.1, one can

see that changing L only in tim exterior domain ft0\12 will change both Pr and Qr but ImPr = KerQr will

remain the same, whereas KerPr =Im Qr will, generally speaking, change. (The change of KerPr =Im Qr

accounts, as before, for a different direction of projecting onto ImPr.) Changing L only on the interior

domain f_ will again cause changes to both Pr and Qr but ImQc = KerPr will not change (whereas

KerQr = ImPr will). However, neither of these changes will essentially affect the control functions g(x).
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Indeed,to cancelout theunwantednoiseon theinteriordomain_, weusethe annihilatingfunction

v(x) = -Pa(r with (r = u, _n , see (3.10), and accordingly, arrive at the control functions g(x)

given by formula (4.6), where L is now the new operator and w(x) is a sufficiently smooth function that

satisfies (4.1) and (2.14). Formula (4.6) still gives the general solution for controls and formally looks the

same as before with the "hidden" difference in plugging in the new L. The reason that the controls are

described by similar formulae even when the actual wave propagation processes are governed by different

equations is that in every particular instance both the unwanted disturbances to be cancelled and the output

of controls propagate across the same medium and satisfy the same far-field boundary conditions. It turns

out that having realized it we can design the controls with no explicit knowledge of the actual properties of

the supporting medium, i.e., the coet_icients Of L except in the region where w(x) _ 0, i.e., where we apply

tile operator L, see (4.6).

As has been mentioned, the region where w(x) _ 0 may always be chosen as a narrow strip straddling

tile boundary F. (This is beneficial from the standpoint of practical design.) Therefore, in the particular

case when the aforementioned obstacles (either in i2 or in flo\f_ or in both domains) are introduced not

right next to the boundary but rather at a distance, the operator L near the boundary remains tile same

Hehnholtz operator of (1.1), and thus the exact same control functions as those obtained in Sections 2 and

3 on the basis of compactly supported w(x)'s can be used for noise cancellation in the current more general

setting.

4.3. Introducing discontinuities in the material properties. The next generalization that comes

naturally after considering the changes of the far-field boundary conditions (Section 4.1) and the changes of

the coefficients of £ that may be caused by anisotropies in f_ and/or f_0\[_ (Section 4.2), is to consider two

different media separated by the boundary F. In some sense, this is the ultimate change of the operator that

we may consider; it further extends the analysis of Section 4.2, in which we allowed for the variation of the

coefficients of L but still assumed that they were smooth across the boundary F. In this section, we allow

the coefficients of the operator L to have jumps on the interface F (e.g., the media on different sides of F

may have different refraction indices k, see (1.1)). Thus, some additional interface conditions may, generally

speaking, be required for solvability. In many cases, and in particular those that we are studying in this

paper, these additional conditions are the continuity of the solution itself and the continuity of its normal

flux across the interface. For the second-order operators, we can write it in the general form as follows:

_(rn°\_) = B_ (_), (4.7)

where _(r_) = Tr(a)u and _(r_°\a) = Tr(a°\_)u are traces of the solution u(x) in the sense of (3.4) taken

• from the interior and exterior sides of F, respectively, and B is a linear operator that provides the required

relation between these traces (e.g., continuity of the solution and its normal flux on F).

We require that the differential equation Lu = f be uniquely solvable on the domain f_0 for any suffi-

ciently smooth right-hand side f in the class of functions that satisfy the far-field boundary condition (4.1)

and the interface compatibility condition (4.7). We denote by G the corresponding inverse operator to L

so that u = G f, u E Uo and u satisfies (4.7). The aforementioned unique solvability implies, in particular,

that relation (4.2) will hold for any flmction w(x) that satisfies (4.1) and (4.7).

To build the Calderon's operators, we now need to distinguish between the boundary traces on different

sides of F. Namely, given the boundary density ((ra), we take an arbitrary (sufficiently smooth) auxiliary

function w(x) E Uo, Tr(a)w = _(r_), so that it also meets the interface condition (4.7) (in the sense that the
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twofunctions_(r_°\_)= Tr(_°\_)w and _(_) are connected via (4.7)) and construct the operators P_ and

Pr according to formulae (4.3); the boundary trace in formula (4.3b) is taken from the side of the domain

_. Again, the condition of (4.5a) type is required to guarantee the result of Proposition 3.1. Similarly,

we obtain Qno\a and Qr according to formulae (4.4); these operators operate on ((_o\a) and the auxiliary

function w(x) E Uo, Tr(_°\_)w = _(rQ°\9), needed for the calculation is again taken so that it meets the

interface condition (4.7). Proposition 3.1 will hold provided equality (4.5b) is satisfied.

One important difference compared to the previously analyzed cases is that here, generally speaking,

I - Pr _ Qr and therefore, we can no longer claim that ImPr = KerQr and KerPr = ImQr. In fact,

similarly to what we had before all those and only those boundary functions _(rn) that satisfy the BEP

Pr_r (_) = _(r_), i.e., _r _) E hnPr, can be complemented on 12 to the solution of the homogeneous equation

Lu = 0 (Proposition 3.1); these functions _(r_) E ImPr should still be interpreted as traces of the incoming

waves with respect, to the domain 12. Moreover, the projection operator Pr still renders the split of the

overall acoustic field into the direct sum of its incoming and outgoing components with respect to the

domain _. However, contrary to what we had before we now need to treat this overall acoustic field _(_)

as defined, i.e., "measured," on the interface F from its interior side and thus, rewrite formula (3.13) as

--(_) -- hnPr ® KerPr. Moreover, the functions _(r_) E KerPr that are interpreted as traces of the outgoing_F

waves with respect to 9, cannot, generally speaking, be complemented to the solution of the homogeneous

equation Zu = 0 on l't0\l't, i.e., do not belong to ImQr. This "mismatch" between KerPr and ImQr may

give rise to reflections from the interface when analyzing a particular problem.

Of course, the considerations that we have just brought forward are full)' reciprocal with respect to

the exterior domain t_0\tl. In other words, we rewrite the decomposition formula (3.17) as -_(rQ°\a) =

Im Qr ® Ker Qr emphasizing that we now measure the overall solution from the exterior side of the interface

F, and note that the outgoing waves _(ra °\a) E Ker Qr may be (partially) reflected from the interface because

KerQr _ ImPr.

As concerns the set of controls (g(x)} however, it still remains essentially the same as before and neither

of the aforementioned changes in the formulation of the problem and solution structure, including possible

reflections from the interface, actually affect it. Indeed, the annihilating function for the domain l't is given

= , see (3.10), i.e., we use the generalized Calderon's potential
by v(x) = -Pn_(r n), where _(rn) U'_nn r

with the density obtained as a trace of the overall acoustic field measured on the interior side of F. Using

equalities (4.3a), we rewrite it as

where the auxiliary function w(x) belongs to Uo see (4.1), Tr(O)w = _(r_), and also satisfies the interface

condition (4.7). Accordingly, the control functions g(x) is again given by formula (4.6), where we can always

take w(x) compactly supported near F. Moreover, from representation (4.8) for the annihilating function

we conclude that we do not even need to know the entire w(x), it is sufficient to construct this auxiliary

function only on the exterior domain l_o\12 making sure that Tr(_°k_)w = B_(r n) r(_°\_)= _r , i.e., that

it satisfy the correct interface compatibility condition (4.7). In practice, the trace of the solution at the

boundary represents the values that are actually measured. Therefore, we are building the controls according

to formula (_.6), where the auxiliary function w(x) is "tuned" in the sense of Tr(_°k_)w = _(r_°\_) to the

trace of the actual acoustic field measured on the exterior side of F.

Moreover, representation (4.8) for the annihilating function v(x) along with formulae (4.4) and (3.17)
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suggest that this annihilating function is, in fact, constructed so that to eliminate the outgoing waves with

respect to the domain f_0\f2. This interpretation has already been mentioned in the end of Section 3.3,

however then we analyzed the case when the outgoing waves with respect to flo\12 were the same as the

incoming waves with respect to 12. In the current framework this is no longer so and the waves generated

by the sources f- not only enter the domain fl but may also be reflected back from the interface F. The

controls that we build according to formula (4.6) respond to the actual filed measured on the exterior side of

F, Tr(_°\_)w = ",r , and cancel out the entire outgoing field component with respect to l)o\g), i.e., both

the portion o/ the filed that propagates through the boundary F into 12 and the portion that may be reflected

back to _o\l'). Note, the reflections themselves do not "contaminate" the measurements because they already

belong to Im Qr and thus do not affect the output of the controls. We conclude that in some sense it may

be more natural to describe the controls in terms of the outgoing waves with respect to _0\12 rather than

incoming waves with respect to _, especially in the case when these waves are not the same.

4.4. Introducing nonlinearities. A recipe for including nonlinearities in the formulation of the active

shielding problem that we analyzed in this paper was first proposed by Ryaben'kii in [22]. In this section,

we simply mention with no detail that the last argument of Section 4.3 actually suggests that nonlinearities

of a particular nature can be handled by the same controls. Indeed, the controls are designed so that to

cancel out the entire outgoing component of the acoustic field with respect to a particular domain. Clearly,

as long as the nonlinearities are not concentrated on or immediately near the perimeter of the region to be

shielded, the controls (4.6) will still be responding to the actual acoustic field measured at the boundary and

the nature of the sources and tile supporting medium away from the boundary -- whether they are linear or

nonlinear -- will not matter. This conclusion holds provided that the nonlinearities satisfy one important

limitation, namely, that they do not alter the frequency of the acoustic signals. It is known, however, that

many nonlinearities do produce multiple frequencies from a single-frequency input. In this case, provided

that the spectrum of frequencies is available ahead of time, the controls can still be built as described above,

but for each frequency separately and independently.

5. An example. The synthesis of our control input will be demonstrated on a simple two-dimensional

example, where the circular region ft defined by r < R is protected from exterior noise by active control

acting either along the perimeter or within an annular region surrounding l). We derive the exact analytic

solution in Fourier representation, and give explicit expressions for the optimal distributed control. No

information about the nature of the exterior sound sources is required, since the solution depends only on

the sound field and its normal derivative measured along the perimeter. In actual implementation, this exact

control function would be approximated by a finite number of acoustic inputs. The same approach applies

to complicated geometries, which can be handled numerically.

5.1. Helmholtz equation in It_2. The Helmholtz equation (1.1) for n = 2 expressed in polar coordi-

nates (r,/9) reads

IZrr -]- Ur/r -I- uoo/r 2 _t- k2u : f, (5.1)

where u is the amplitude of the time-harmonic acoustic field u e i_t, and k = c/w is the wavenumber (refraction

index).

5.2. Fourier transform. Let 5 be the Fourier transform

1 fo 2"= -_ u e -ira° dO
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and

1 fo 2_f =- _ f e -ira° dO.

The Helmholtz equation (5.1) in this Fourier representation becomes

+ r r/r + (k2 - = ]. (5.2)

The functions fi and f are associated with a particular mode number m. This is implicit in our notation so

that the equations are not cluttered with an excessive number of superscripts.

5.3. Boundary conditions. Functions fi must be analytic at the origin r = 0 and decay to zero at

infinity. Moreover, we shall consider compactly supported forcings f so that as r _ oc, the responses fi

must represent outgoing waves. The outgoing waves satisfy the Sommerfeld condition (2.2a), which means

that asymptotically

~ -%e (5.3)
V_ as r ----_ OO

for some constant a.

5.4. Fundamental solution. Let us compute the response to a unit monopole input at r -- s, 0 = 0,

i.e., a shifted fundamental solution• (This presents no loss of generality, because for a particular location of

the source we can always achieve that its angular coordinate 0 be zero by rotating the coordinate system.)

We have a 5-type source

f(r,O) = 5(r - s)5(rO)= 5(r - s)5(O)/r--5(r - s)5(O)/s

so that

f(r) -- 5(r - s) (5.4)
2_rs

The solution of equation (5.2) with the right-hand side (5.4) is explicitly constructed as follows. We first

notice that equation (5.2) is homogeneous everywhere except at r -- s. The homogeneous counterpart

to equation (5.2) has two linearly independent eigensolutions, which we take as fiO)(r) = Jm(kr) and
• (2)

fi(2)(r) = Y(kr) + iJm(kr) - zHm (kr), where Jm(kr) and _';_(kr) are the Bessel functions, so that fi(1)(r)

satisfies the condition of analyticity at r = 0 mentioned in Section 5.3 and _/{2)(r) satisfies the condition

(5.3). Then, we build the solution of the nonhomogeneous equation (5.2) driven by the 5-source (5.4) from

the two branches: fi(1)(r) for r < s and fi(2)(r) for r >_ s, so that in addition it be continuous at r = s

and have a particular discontinuity in the first derivative prescribed by (5.4). In so doing, we arrive at the

fundamental solution

{ 1jm(kr)(}_(ks) +iJm(ks)) for r < s
4(r,s) = (5.5)

4 Jm(ks)(];,(kr) + iJm(kr)) r >_ sfor

5.5. Subspaces of incoming and outgoing waves. Let us now consider a distribution of sources

on the plane ll_2. Then, in the Fourier space we obtain equation (5.2) driven by the right-hand side f(r),
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which has an extended support On r >_ 0, as opposed to the point-wise su'pport like in (5.4). In this case,

tile corresponding solution is given by the integral (2rs is the Jacobian):

[ 2 8d8,fi(r)
^

suppf

(5.6)

which is obviously a "linear combination" of the fundamental solutions G(r, s) centered at different locations

on supp ], and which can be considered as a generalization of the standard convolution with the fundamental

solution (cf. (2.3)) that we have in the case of constant coefficients.

At a given location R, we can now easily distinguish between the two components of the overall solution

z_(r) given by (5.6): fi+(r) generated by the interior sources ]+(8), s < R, and fi-(r) generated by the
^_

exterior sources f (s), s > R. Indeed, similarly to Section 2 we have

(5.7a)fi+(r)= / G(r,s)]+(s)27rsds= f G(r, 8)](s)27rsds,

supp/+ {s<R}

supp/- {s>_R}

Therefore, we can say that those and only those solutions fi+(r) that can be attributed to the interior

sources in the sense of representation (5.7a) are "parallel" to the right branch fi (2)(r) = Y(kr) + iJm(kr) of

the fundamental solution (5.4), i.e., tile following Wronskian is equal to zero:

det dfi+ dfi(2) = 0. (5.8a)
dr dr

Analogously, those and only those solutions fi- (r) that can be attributed to the exterior sources (with respect

to the location r) in the sense of representation (5.7b) are "parallel" to the left branch fi(l)(r) = Jm(kr) of

the fundamental solution (5.4), i.e., the following Wronskian is equal to zero:

det dfi- d'h (1) = 0. (5.8b)

_ dr

Clearly, the portion fi+(r) of the total solution fi(r) which is entirely due to the interior sources s < R

satisfies the homogeneous counterpart of the differential equation (5.2) on the exterior domain r _> R and

thus, using a standard property of the Wronskian that it is identically zero once it is zero at one point, we

obtain from (5.8a):

d(}m(kr) + iJm(kr)) fi+
dfi +

- (}m(kr) + igm(kr))--_r = O, r > n. (5.9a)dr

Similarly, the portion fi-(r) due to the exterior sources s > R alone satisfies

dJm(kr) ft- - Jm(kr)d_. - = O, r < R. (5.95)
dr ar
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Note, relations of type (5.8) and (5.9) have been used extensively for constructing the so-called artificial

boundary conditions that are needed for the numerical solution of infinite-domain problems, see the review

paper by Tsynkov [32].

Tile kernels of the two linear constraints (5.9a) and (5.9b) define a decomposition of the solution space

into a direct sum of subspaces corresponding to outgoing and incoming waves, respectively. Note, the concept

of splitting the solution into incoming and outgoing components was introduced and explained in detail in

Section 3.2. Once we identify the location r = R with the boundary of the domain fl, we can use relations

(5.9) to actually decompose of the overall acoustic field fi(r) into the interior and exterior contributions,

fi+(r) and fi-(r), with respect to Ft. This is done by solving equations (5.9) along with fi+ + _- = fi and
dfi + dfi- d_ du +

dr + dr = d--_' i.e., a total of four linear equations, with respect to the unknown quantities fi+, d----_-'

dfi
dfi- while treating fi and _ as the given data. The solution isfi-, and d--'_-'

{ dJm(kr)} ijm(kr))r= _
7rr d_t (kr) fi (Ym(kr) + (5.10a)

ti+l_=n = _ dr Jm - dr

t _ Tcr { d_t dJm(kr) } d(t;,,(kr) + iJm(kr)) r=Rdr r=n -- -_ "_r dm (kr ) - fi dr dr '
(5.10b)

u- [r=R = Tzrr{ fi d(}'m(kr)+iJm(kr))dr -d-'-rdfi(}_n(kr)+iJm(kr))} Jm(kr) r: R
(5.10c)

dfi-[ 7rrf'd(};*(kr)+iJm(kr))_r } (5.10d)dr T=n = -_ _u dr (Ym(kr) +iJm(kr)) dJm(kr)__r r=n "

5.6. Noise control along the perimeter. In this section, we build the controls concentrated only on

tile boundary of the domain Ft, i.e., on the circle r = R. We consider the situation where the total acoustic

field is generated by three categories of sources: interior sources ]+, monopole-type control inputs _ along

the perimeter r = R, or in other words, as we are discussing the Fourier representation, control function

/}(r) = AS(r - R) with the point-wise support at r = R, and exterior sources f . The responses to these

inputs will be fi+, _) and fi-, respectively. The governing equation is (1.5). In Fourier representation, the

total response is denoted by fi -- _+ + _ + fi-. Note, in tile general discussion of Section 2 we have also first

obtained the annihilating function v(x) as a response to only surface excitation, see formulae (2.10), (2.12),

(2.13), and then recovered the same function as an output of the volmnetric control (2.20) constructed with

the help of the auxiliary function w(x). In the framework of the current example, we analyze volumetric

controls in Section 5.9.

The interior region can be completely shielded from the exterior noise by devising control inputs which

exactly compensate for the exterior contribution to _, such that equation (2.11) holds. This condition is

equivalent to requiring that

fi-(R) + 9(R) = 0 (5.11)

and

T_nlim(--_-rdfi-+ d_)=O "
(5.12)
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Both79andfi- areresponsesto exteriorsourcesrelativeto theopendomainf_,soboth_andfi- separately
satisfyequation(5.9b).Since(5.9b)and(5.11)imply(5.12),thecondition(5.12)isredundant.Therefore,
(5.11)isasufficientconditionwhichwewilluse.Integral(5.6)alongwiththerepresentation_(r) = AS(r-R)

for the control, in which the constant A is yet to be determined, immediately yields that for r < R:

_(r) = A-2_rR. G(r,R), and using the continuity of _)(r) and equality (5.11), we conclude that A =

-_-(R)/(27rR. G(R, R)). Consequently, the control input is given by the formula

4fi- (R) 5(r - R) (5.13a)
[;(r) = Jm(kR)(_(kR) + iJm(kR)) 27rR '

which can be evaluated using equation (5.10c) and simplified to read:

{ dfi ^ dlog(Ym(kr) + iJm(kr)) } r:n 6(r _ R) (5.13b).0(r)= u

In compliance with the general theory developed in Sections 2 and 3, expression (5.13b) requires the knowl-

edge of the total fi and d_/dr along the exterior of the perimeter r = R, but does not require any information

about the nature of exterior sound sources. Moreover, the control (5.13b) exactly shields the interior region

r < R from the exterior noise, while leaving the interior sound component completely unaffected. Realizable

approximations of this exact solution may prove an effective method of reducing exterior noise.

5.7. Control of a single exterior source. As has been shown in Sections 2 and 3, and also follows

from the previous analysis in Section 5.5, the control _Ogiven by (5.13b) is insensitive to the contribution
dfi

of interior sources to fi and _r" Let us consider a single exterior source located at s > R whose forcing

function ] is given by (5.4). For this exterior source the response function is fi-(R) = (¢(R, s), see (5.6),

and substituting this expression into (5.13a), we obtain

I_(ks) + iJm(ks) 6(r - R) (5.14)
O(r) = Ym(kR) + iJm(kR) 27rR

Knowing the asymptotic behavior of Bessel

Exterior noise field before control

-i0

-20

-60 • r
2 2 r

6 u

FlG. 5.1. A particular sound field u- (r, O) generated by the exte-

rior sources given by formula (5.15). The vertical scale is in decibels.

functions as m ---+ 0% we can immediately see

thatg--[?rn_ (R) m_(r-R) andtherefOre27rR

when s > R the Fourier series with the coeffi-

cients _,, is convergent to an infinitely smooth

function of the argument 0.

5.8. A computational example. As a

computational example, we have considered

the problem of shielding a domain of radius

R = 1 from the time-harmonic acoustic dis-

turbances with the wavenumber k = 5 (see

(1.1)). A particular exterior noise field u- was

generated by the forcing function

f- (x, y) = 6(x - 3)6(y - 1)
(5.15)

-6(x- 5)6(y + 1)

which produces the noise field u- depicted in

Figure 5.1.
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FIG. 5.2. Control effort Igl along the perimeter r : 1

Acoustic field due to control
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FIG. 5.3. The sound field v(r,O) generated by the control input

along the perimeter. The vertical scale is in decibels.

Noise field with control
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-5_0_ 3
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FIG. 5.4. The sound field u-(r,O) + v(r, 0) resulting after the

perimeter control has been applied. The vertical scale is in decibels.

Figure 5.2 shows the required control in-

put along the perimeter, which can be com-

puted using equation (5.13b).

This perimeter input produces a control

acoustic field v depicted in Figure 5.3.

With control applied, the noise level

within the protected region r < R = 1 is re-

duced to zero. This can be seen in Figure 5.4.

We note that in Figures 5.1, 5.3, and

5.4 of this section the vertical scale is given

in decibels; these units are defined as db =

201ogl0 IAI, where A is the amplitude of a sig-

nal, or alternatively, db = 10 log10 IAI2, where

IAI 2 is power.

5.9. Optimal control with annular

support. As opposed to Section 5.6, in which

we analyzed surface controls, here we con-

sider volumetric control sources compactly

supported on the annular region of thickness a.

In other words, we now have interior sources

in the region r < R, exterior sources in r > R,

and control sources within R < r < R + a.

Our goal will be to find a control which can-

cels out the unwanted exterior noise on 12 and

is also optimal in the sense of a cost criterion

specified below (see (5.17)).

We note that according to Proposition 2.1

the entire variety of appropriate controls is de-

scribed by formula (2.20), where the auxiliary

function w(x) satisfies the Sommeffeld con-

dition (2.2a) and boundary conditions (2.14).

To obtain compactly supported controls it is

natural (as has been repeatedly pointed out

in Sections 2, 3, and 4) to consider compactly

supported functions w(x). However, this ap-

proach will not, generally speaking, yield all

possible compactly supported controls because

a function w(x), which is not compactly sup-

ported near the boundary, may nonetheless

generate a compactly supported g(x) accord-

ing to formula (2.20). Still, we expect that for

the problems that originate from applications
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thisapproachwill ononehandprovidefor theonlytangiblewayto parameterizethecompactlysupported
controlsandontheotherhand,thesetof controlsobtainedthiswaywill besufficientlywidefor subsequent
optimization.

Forthepurposeofthedemonstrationin thissectionit willbeconvenientto consideradifferentsub-class
ofcompactlysupportedcontrols,namelysquareintegra'olecontrols.Thesimpleformulationthat westudy
here,i.e.,theformulationthatpresumestheisotropyof thesupportingmediumeverywhereandprovidesfor
theseparationof variablesalongtheboundary,will allowusto explicitlyconstructtheoptimalcontrolin
thisclass,wheretheoptimalityis treatedasa minimumof thestandardL2 norm, see (5.17).

Using the same argument as before, we see that the interior will be exactly shielded from the exterior

sources provided that the linear constraint (5.11) holds at the boundary r = R. This constraint written

explicitly is

a-(R) + fn+o G(n, s)9(s) 2_sds = 0, (5.16)
Jt R

which is satisfied by many alternative distributions of control sources. Subject to this linear constraint, we

shall seek to minimize the cost function defined by the L2 norm of the control effort:

R+aI]9[]2 = [9(s)[ 2 2nsds ----+ min . (5.17)
R

Let us consider the space of square integrable control inputs 9 : [R, R + a] -+ C. At the optimal solution 9,

which is a point in this space, the corresponding level set of the control effort norm must be tangent to the

hyperplane of complex codimension 1 defined by the linear constraint (5.16). If we perturb the optimal 9 by

a perturbation 7 within the constraint set, the cost must never decrease:

R+a{]_ + _yi]2 = (]_(s)] _ + ]_/(s)[ _ + _(s)q,(s) + t}(s)7(s)) 2_rs ds > ]]_1]2 .
JR

This can only happen if all allowable perturbations 7 satisfy the following (real) orthogonality condition:

(g, 7) clef 1 fn+a= + 9(s)7(s)) = 0 (5.18)
2Jn

Since the perturbation _f is limited only by the single complex constraint (obtained as a variation of (5.16)):

nn+_ G( R, s)'_(s) 27rs ds = 0, (5.19)

the orthogonality condition (5.18) imposes a severe limit on the form of _. We note that (5.19) implies that

all allowed perturbations 7(s) are orthogonal to all functions of the type p(s) = C • G(R, s), where C is a

complex constant, in the sense of (5.18):

1 fR+a_ ^

(P' = JR (CG(n, + C&(n, ds = 0, VC C, (5.20)

because the integral in (5.20) is the real part of the integral in (5.19) premultiplied by C. Since C is

arbitrary, the converse also holds, so that conditions (5.19) and (5.20) are equivalent. Therefore, the complex

one-dimensional subspace of functions {p(r)} = {C- G(R, r) ]C E C} spanned by the function G(R, r) is

orthogonal to all allowed perturbations. It follows from (5.18) that the optimal control ) must lie within the

subspace {p}. Therefore, within the annular support of the control input R < r < R + a, t}(r) = C. G(R, r)
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for some complex constant C (elsewhere, t_(r) - 0). As the last step, the constant of proportionality C is

obtained from (5.16). The unique solution for the control that we obtain by this method is given by

=
a- (n) G(n, r)

/n n+" IG(R, s)I 2 2as ds
(5.21)

4_- (R) (}_ (kr) - iJm(kr))

7r_m(kR){82[Jm(lgS) 2- Jm_l(kS)_m+l(kS)_t- ]"m(ks) 2- ,_,_l(_8)]rm+l(kS)]} [:_+a

for R < r < R + a, and t)(r) = 0 otherwise. The term _-(R) in (5.21) must be evaluated via the equation

(5.10c) which requires the measurement of fi and d_/dr along the perimeter r = R prior to the application

of the control. Alternatively, this process of measurement and control can be iterated in order to adapt to

slow changes in the noise field. The minimum cost of this optimal control is ]]_I]2 = lfi-(R)l 2.

Returning to the computational example

Optimal distributed control input

0.3

0

theta 4_ gl

6

F_G. 5.5• The magnitude of the optimal distributed control input

Ig(r,O)l with support 1 < r < ,1 for the computational example of

Section 5.8 with noise sources given by formula (5.15).

of Section 5.8, the optimal distributed con-

trol input to exterior noise sources given by

formula (5.15) was computed using equation

(5.21). In this example we used R = 1 and

a = 3. The amplitude lg[ of the resulting op-

timal control is depicted in Figure 5.5.

6. Discussion and conclusions. We

have presented an accurate mathematical for-

mulation of the problem of active shielding of

a predetermined region of space from time-

harmonic acoustic disturbances. We have con-

structed a general solution of this problem

in the closed form, and using the appara-

tus of generalized Calderon's potentials and

boundary projection operators analyzed sev-

eral consecutively more complex cases: "Pure"

Helmholtz' equation on the entire space with

the Sommerfeld boundary conditions at infinity, other types of the homogeneous far-field boundary conditions

that may be set either at infinity or at a finite external boundary, spatial anisotropies and discontinuities in

the material properties, and certain kinds of nonlinearities.

Our approach to the problem of active noise control possesses several key advantages. It does not

require any knowledge of either structure or location or strength of the actual sources of noise that is

about to be cancelled. Neither does it require knowledge of the properties of the medium across which

the acoustic signals propagate, except, maybe right next to the boundary of the domain to be shielded.

It guarantees the exact volumetric cancellation of the unwanted noise throughout the domain of interest,

while the input information sufficient for building the controls is given by a particular set of measurements

performed only at the perimeter of this domain. Moreover, the control sources themselves are concentrated

also only on or near the perimeter of the region to be shielded thus rendering an effective surface control

of the volumetric properties. Finally, the controls are constructed so that to eliminate only the component
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of the acoustic field generated by the exterior sources (i.e., located outside the domain of interest), while

leaving the component that comes from the interior sources completely unaffected. In so doing, however,

the measurements performed on the perimeter of the domain can refer to the total acoustic field rather than

its unwanted exterior component only, and the methodology can automatically tell between the interior and

exterior contributions to the overall field.

To demonstrate that the technique is appropriate, we have thoroughly analyzed a model two-dimensional

example, and using tile separation of variables in the Helmholtz equation written in polar coordinates and

the apparatus of Bessel functions, constructed both purely surface and near-surface volumetric controls for

shielding a cylindrical region from a given distribution of the noise sources.

In the future, the discrete framework for the active noise control is going to be used for analyzing

complex configurations that originate from practical designs. This discrete framework has, in fact, already

been developed to a large extent, see [19--22]. It possesses the same set of attractive features as the foregoing

continuous formulation. The discrete formulation is based on the difference potentials method by Ryaben'kii

[28 30], and uses finite-difference analogues of Calderon's potentials and boundary projection for constructing

the controls and analyzing their properties. As opposed to the continuous model described in this paper, in

the finite-difference framework both the measurements are performed and the control sources are located at

the grid nodes, i.e., there are discrete sets of sensors and' actuators for the acoustic field, which is obviously

more feasible from the standpoints of physics and engineering applications.

There are most important issues yet to be addressed, in particular in the discrete framework, aimed at

eventually creating practical designs. First, there are considerations of conditioning -- specifically, how the

measurement errors that are inevitable in any practically engineered system of sensors will propagate through

the control system. Second, there are considerations of optimality. As we have seen, there is an entire family

of control functions that can eliminate the unwanted noise on a given domain -- this is, in fact, true for

both continuous and discrete formulations. For a simple model example in the continuous formulation, we

have shown in Section 5.9 how to find a particular representative of this family, which is optimal in the sense

of a certain criterion. Generally, optimizing the general solution for controls is a separate substantial task

composed of a number of sub-problems.

Namely, the criteria for optimization (i.e., objective functions) that would fit different practical require-

ments need to be clearly identified. These criteria will certainly be problem-dependent. For example, the

designer of a noise suppression system in the passenger compartment of an aircraft should obviously try

and minimize its weight and energy consumption, while for suppressing the household appliances' noise the

primary concern may be the cost of the active control system. After identifying the objective(s) for opti-

mization, an appropriate optimization methodology has to be chosen; it may be either gradient-based or

combinatorial (or a combination of the two) and may also include the initial effectiveness filters. Moreover,

there may be different levels for optimization. In the beginning, we can search through the family of exact

solutions to the noise control problem that is at our disposal (see Sections 2, 3, and 4) and thus obtain the

one, which will be optimal in some sense. In so doing we are still guaranteed that whatever optimum we find

it will still do the job, or in other words, exactly cancel out the unwanted noise on the domain of interest.

If, however, the optimum we find this way is still unsatisfactory from the standpoint of the chosen criteria,

we can go beyond the optimization of the exact solution only. In fact, we can introduce the tolerance, i.e.,

acceptable level of noise reduction ms opposed to the exact cancellation, and using this greater flexibility try

and better satisfy the optimization criteria. This is already an approximate optimization because it deviates

from the exact solution for controls; as such, it will certainly require solving the finite-difference governing
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equation(s)repeatedlyinsidetheoptimizationloopfor thepurposeof assessingthe qualityof thenoise
reduction.(Again,in thepreviouscasethenoisecancellationisexactandthisisknownaheadof time.)A
prerequisiteofthisoptimization,of course,is anefficientanalysiscode;mostlikely,fastparallelcodeswill
beneededforsolvingreal-lifeproblems.

In thepaper,wehaveaddressedonlythecaseoftime-harmonicdisturbances.In fact,themethodology
willworkforquasi-stationaryacousticfieldsaswell,i.e.,thosethatchangeslowlyin time(slowlyonthescale
of the inversefrequencyoftim_harmonicoscillations).In the lattercase,practicalimplementationof the
noisesuppressiontechniquewill requirereal-timemeasurements.If, however,wearedealingwithstationary
interiorandexteriorfields,wecanusethesimplifiedversionof thetechniquethatpermitsprecalculationof
thedependenceof theresponseondomaingeometryandsystemproperties.In otherwords,a microphone
isneededin thefinalsystemonlyto sensephaseandamplitude.Togetherwiththis,preprogrammednoise-
cancellingactuatorsaresufficient.

Finally,weshouldmentionthattime-harmonic(i.e.,Helmholtz)problemsof activeshielding(aswellas
theaforementionedquasi-stationaryproblems)representonlyaportionoftheoverallvarietyofformulations
that thepotentialusersof suchmethodologieswouldlike to haveexplored.EventhoughtheseHelmholtz
problemsareof a substantialsignificancethemselvesfromthestandpointsof bothmathematicsandap-
plications,it is clearthat truetime-dependentproblems,i.e.,thosethataccommodatebroadbandacoustic
fields,will ultimatelybedemandedbypractitionersandthereforedeservetheoreticalandnumericalstud)'.
Theproblemof activenoisecontrolin theformulationthat involvesbroadbandspectraof frequencieswas
studiedbyMalyuzhinets[33]andFedoryuk[34].Someinitial resultsonthetime-dependentactiveshielding
problemobtainedin theframeworkofgeneralizedCalderon's potentials can be found in work by Zinoviev

and Ryaben'kii [35]. Generally, the extension to broadband spectra of disturbances is nontrivial in every

respect and provides a novel challenge from tile standpoints of both theoretical analysis and subsequent

practical implementation.
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